On the Biharmonic Heat Equation on Complete Riemannian Manifolds

نویسندگان

چکیده

We study entire solutions of the biharmonic heat equation on complete Riemannian manifolds without boundary. provide exponential decay estimates for kernel under assumptions lower bound Ricci curvature and noncollapsing unit balls. And we prove a uniqueness criteria Cauchy problem. As corollaries, conservation law uniform $$L^\infty $$ estimate starting with bounded initial data.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential Harnack Inequalities on Riemannian Manifolds I : Linear Heat Equation

Abstract. In the first part of this paper, we get new Li-Yau type gradient estimates for positive solutions of heat equation on Riemmannian manifolds with Ricci(M) ≥ −k, k ∈ R. As applications, several parabolic Harnack inequalities are obtained and they lead to new estimates on heat kernels of manifolds with Ricci curvature bounded from below. In the second part, we establish a Perelman type L...

متن کامل

Biharmonic Hypersurfaces in Riemannian Manifolds

We study biharmonic hypersurfaces in a generic Riemannian manifold. We first derive an invariant equation for such hypersurfaces generalizing the biharmonic hypersurface equation in space forms studied in [16], [8], [6], [7]. We then apply the equation to show that the generalized Chen’s conjecture is true for totally umbilical biharmonic hypersurfaces in an Einstein space, and construct a (2-p...

متن کامل

A Short Survey on Biharmonic Maps between Riemannian Manifolds

and the corresponding Euler-Lagrange equation is H = 0, where H is the mean curvature vector field. If φ : (M, g) → (N, h) is a Riemannian immersion, then it is a critical point of the bienergy in C∞(M,N) if and only if it is a minimal immersion [26]. Thus, in order to study minimal immersions one can look at harmonic Riemannian immersions. A natural generalization of harmonic maps and minimal ...

متن کامل

Gradient Estimate for the Poisson Equation and the Non-homogeneous Heat Equation on Compact Riemannian Manifolds

In this short note, we study the gradient estimate of positive solutions to Poisson equation and the non-homogeneous heat equation in a compact Riemannian manifold (Mn, g). Our results extend the gradient estimate for positive harmonic functions and positive solutions to heat equations. Mathematics Subject Classification (2000): 35J60, 53C21, 58J05

متن کامل

Quasilinear elliptic inequalities on complete Riemannian manifolds

We prove maximum and comparison principles for weak distributional solutions of quasilinear, possibly singular or degenerate, elliptic differential inequalities in divergence form on complete Riemannian manifolds. A new definition of ellipticity for nonlinear operators on Riemannian manifolds is introduced, covering the standard important examples. As an application, uniqueness results for some...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometric Analysis

سال: 2022

ISSN: ['1559-002X', '1050-6926']

DOI: https://doi.org/10.1007/s12220-022-00915-1